Der Begriff des Data Bias (Datenverzerrung) bezieht sich auf systematische und ungewollte Verzerrungen oder Voreingenommenheiten, die sich in Datensätzen widerspiegelt. Ein Data Bias kann während des gesamten Datenverarbeitungsprozesses auftreten und nimmt mitunter verschiedene Formen an. Oft entstehen diese Verzerrungen aufgrund von ungleichmäßigen oder unrepräsentativen Datensätzen, ungleichem Zugang zu Daten oder menschlicher Voreingenommenheit. Ein Data Bias kann in verschiedenen Phasen des Datenlebenszyklus auftreten, einschließlich Datenerhebung, -aufbereitung,-analyse und -interpretation.
Wenn die Daten nichtrepräsentativ für die Gesamtpopulation sind, kann dies zu Auswahleffekten führen und eine Verzerrung der Ergebnisse zur Folge haben.
Wenn Menschen, die Daten sammeln oder annotieren, persönliche Vorurteile haben, können diese Vorurteile in die Daten einfließen und in ihrer Konsequenz zu einem Data Bias führen.
Wenn bestimmte Gruppen in den Daten überrepräsentiert oder unterrepräsentiert sind, kann dies zu Verzerrungen führen. Dies kann aufgrund von historischen Ungleichheiten, Diskriminierung oder anderen Faktoren geschehen.
Die Art und Weise, wie Daten erfasst werden, kann zum Auftreten eines Data Bias führen. Wenn beispielsweise bestimmte Gruppen eher geneigt sind, Online-Umfragen zu beantworten, während andere nicht erreicht werden, entsteht eine Verzerrung, ein sogenannter Data Bias.
In maschinellen Lernmodellen können Algorithmen aufgrund von Data Bias in den Trainingsdaten oder aufgrund der algorithmischen Entscheidungslogik selbst voreingenommen sein.
Es ist wichtig, einen Data Bias frühzeitig zu erkennen und zu minimieren, insbesondere in Bereichen wie der künstlichen Intelligenz und dem maschinellen Lernen, in denen Algorithmen auf großen Mengen von Daten trainiert werden. Unbeabsichtigte Voreingenommenheiten können zu ungerechten oder diskriminierenden Ergebnissen führen, was dann schwerwiegende Konsequenzen zeitigt. Daher ist die sorgfältige Überprüfung, Reinigung und Prüfung auf Ausgewogenheit von Daten von großer Bedeutung, um einem Data Bias nachhaltig vorzubeugen.
Sie verfahren täglich mit großen Datensätzen und benötigen Hilfe bei der Etablierung eines kohärenten Datenmanagements? Kontaktieren Sie uns für ein unverbindliches Erstgespräch und lassen Sie sich von unseren Expert:innen beraten.